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Abstract

In AutoML tasks, the Bayesian Optimization (BO) based methods, which often
resort to various surrogate models to explore a good trade off between the ex-
ploitation and exploration, have shown great effectiveness for hyper-parameter
optimization. Most of these methods use a single pattern, however, each of these
model contains the common limitations: 1) easy to get the suboptimal solution; 2)
time-consuming for optimizing the model when meeting high dimension features.
To get better results for AutoML tasks, in this paper, we propose different ensem-
bles Bayesian models and try to explore these models, which adopt the advantages
of different surrogate models so as to make these models to complement each other
and alleviate these limitations. The experimental results on the BBO datasets show
the effectiveness of our motivations. Moreover, we can find that the hybrid method
can generally get better scores. In the mix of models, we also find that turbo and
pysot based hybrid strategy gets the best performance. The code is public available
at https://github.com/SupUnicorn/bbo_challenge_4th.

1 Introduction

In AutoML [9, 18, 8] tasks, in order to get the optimal solutions of various tasks, the hyper-parameter
optimization process plays an important role. Among these hyper-parameter optimization based
methods, Bayesian Optimization (BO) [6, 16] based methods show strong advantages to this area.
Generally, the BO based methods are black box process for different tasks and typically take a lot of
time to get good hyper-parameters. The performance of BO algorithm can be improved by defining
the surrogate model and acquisition function of the algorithm.

Recently, different surrogate models have shown their effectiveness for choosing the hyper-parameters
of AutoML tasks. Most of these methods try to find a good tradeoff between the exploitation
and exploration, which are two classical sampling strategy for getting global optimal solution.
TPE [20, 12], known as Tree-Structured Parzen Estimator, is a method of learning the hyper-parameter
Model with the GMM (Gaussian Mixture Model) [14, 21]. RBF interpolation [11, 7] is one of
the most popular methods for approximating the general dimensions of discrete data. Gaussian
process [15, 17] is a random process with joint Gaussian distribution for any finite number of random
variables when seeking the desired hyper-parameters [10]. Although the above surrogate models get
some effectiveness, these methods contain several limitations: (1) Since Bayesian optimization is to
use Bayesian theorem to estimate the posterior distribution of the objective function, and it is easy
to continuously get the local optimal solution when involving the tradeoff between exploitation and
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exploration[13]; (2) When meeting the high dimension features, these methods are likely to take lots
of time for the solutions.

To solve the above limitations and get better results for BBO competition, we propose various
ensemble models [3, 19] strategy which combines the advantages of the above surrogate models.
Specifically, in order to get the global optimal solution, our goal is to achieve a better hyper-parameter
enumeration in each batch optimization through balanced exploration and exploitation. The strategy
proposed in this paper can combine the advantages of different surrogate models and acquisition
functions, and at the same time find a balance in the exploitation and exploration, so as to improve
the efficiency of hyper-parameter optimization. Finally, our proposed strategy shows competitive
results with the BBO datasets.

2 The proposed approach

The method proposed in this paper uses the hybrid surrogate model, puts the hyper-parameter groups
proposed by different base Bayesian optimizers into the same optimization space, and uses different
surrogate models and acquisition functions to pick up new hyper-parameters.

When the same surrogate model and acquisition function are used to push the hyper-parameter
beyond a certain number of steps, the new hyper-parameter often falls into the local optimal situation.
In the engineering implementation of the surrogate algorithms, pysot [4] and turbo [5] have some
optimizations in dealing with local optimality, but they also tend to pay more attention to development
instead of exploration. This is because in their exploration methods, the value of exploration is
relatively random, which lacks priori. Our approach will leverage different algorithms to enhance
exploration without losing exploitability.

In Hybrid Bayesian optimization, we initialize two or more different Surrogate models. On each
batch, different models select new hyper-parameters through their own acquisition function, and then
update the mapping relationship between hyper-parameters and metrics after training and validation,
at the same time, different surrogate models will update their own model by using all mapping
relationships.

Using the same mapping space for different surrogate models, but using different acquisition functions
when collecting new hyper-parameters, can make different approaches more explorative. The basic
goal of our motivation is to balance the exploration and the exploitation aspects of the algorithm. The
pseudocode of the algorithm is shown in the Algorithm 1.

Algorithm 1 Hybrid Surrogate Model Optimization

1: Input: fX , χ, S1, S2

2: initialize surrogate1,surrogate2,H = {}
3: for each batch ∈ batches do
4: p1(y|x,H)← FITMODEL(surrogate1, H)
5: p2(y|x,H)← FITMODEL(surrogate1, H)
6: h1 ← argmax

x∈χ
S1(x, p1(y|x,H), batch_size/2);

7: h2 ← argmax
x∈χ

S2(x, p2(y|x,H), batch_size/2);

8: metrics = fX(h1 ∪ h2)
9: H = H ∪ {(h1 ∪ h2),metrics}

10: end for
11: return hp← argmax

metrics
H

3 Experiments

3.1 Experimental setup

Datasets In this paper we use the BBO datasets, These data belong to the traditional machine
learning data set, including binary classification, multiple classification and regression data. The
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Table 1: The experimental results

Original Hybrid
Dataset hyperopt pysot turbo hpo+pysot hpo+turbo pysot+turbo
All 95.679 97.824 97.972 97.935 98.172 98.795
iris 94.580 96.261 95.621 95.682 95.312 96.759
boston 98.926 99.669 100.393 99.184 100.286 100.511
breast 98.086 97.946 97.320 99.614 98.795 98.946

value range of the hyper-parameter is specified by the Bayesmark toolkit; The experiment was carried
out using a toolkit provided by blackbox.

Baselines This paper we apply several surrogate models of Bayesian optimization based method
as our baselines. They are TPE method, which uses hyperopt [1] to support TPE’s optimization
algorithm, RBF method which applies pysot packages optimization processes and the turbo is used
for Gaussian process of bayesian optimization.

Experimental details TPE, RBF and GP belong to different surrogate models, and we use different
acquisition functions to propose new hyper-parameters. When combining the two different algorithms,
the batch definition is divided into two parts and only the hyper-parameter of batch_size/2 is
proposed respectively. During the optimization of the surrogate model, each model will update
the mapping of all the hyper-parameters and metrics, which is equivalent to its exploratory being
considered based on the experience of other models, and it maintains its exploitation at the same time.
In the process of trying out different methods, we have also adopted the meta-based hyper-parameter
tuning method, shrinkage method combined with Thompson Sampling [2], etc., and the final method
is used the ensemble Bayesian optimization method.

3.2 Experimental results

We conduct experiments on different algorithms based on the data provided by Bayesmark, and
compare the results of three basic algorithms and different combinations of these three algorithms. It
can be seen that the hybrid approach generally has better results than using a single surrogate model,
and the stronger the base model is, the better the fitting ability of the combined model is. These
effective performances certify that all of these surrogate models can complement each other, and we
find that the ensemble model based on turbo and pysot method achieves higher results.

4 Conclusion

We use the method of hybrid surrogate model to improve the effect of Bayesian optimization. By
comparing with the original individual model, we can find that the hybrid method can generally get
better scores. In the mix of models, we find that turbo and pysot based hybrid results are the best
choice, and we used this code for the final version of the submission.
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